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Flow in a symmetric channel with a sudden expansion makes a transition from a sym-
metric flow to an asymmetric one due to a symmetry-breaking pitchfork bifurcation
on a gradual increase of the Reynolds number if the system is perfectly symmetric.
However, an unavoidable infinitesimal imperfection of the system may render the
pitchfork bifurcation imperfect. A weakly nonlinear stability analysis is proposed to
investigate the structural instability of the bifurcation for such a flow. As a result, an
amplitude equation for a disturbance is derived by including the effect of the imper-
fection of the system, and its coefficients are evaluated numerically. The equilibrium
amplitude of the disturbance is calculated from the amplitude equation and compared
with the experimental results for the flow in a channel that is presumed symmetric
and also with the numerical solution of the full nonlinear equations for the flow in a
slightly asymmetric channel.

1. Introduction
Two-dimensional flow in a symmetric channel with a sudden expansion is a typical

example of a flow which is not homogeneous in its flow direction. Traditional
stability theories for parallel flows cannot be applied to such a flow because of the
inhomogeneity. So, the stability of the flow has been investigated mainly by numerical
methods and experiments. It has been revealed that the transitions and instabilities
of the flow include rich phenomena because of the inhomogeneity.

Durst, Melling & Whitelaw (1974) made detailed studies of the transition of
two-dimensional flows in a presumed symmetric channel with a sudden expansion.
They measured velocity profiles of the flow experimentally by LDV (laser Doppler
velocimetry) and examined the flow patterns by flow visualization methods. The
velocity profiles measured were in good agreement with those obtained by solving
the two-dimensional momentum equation although the flow was strongly three-
dimensional even well away from the channel corners, except at the lowest measurable
velocities. They found that the flow is symmetric at low Reynolds numbers, but
becomes asymmetric at higher Reynolds numbers. At very high Reynolds numbers
the flow became periodic in time.

The phenomenon of the asymmetric separation of internal laminar flow in a
channel with a sudden expansion was attributed to an instability of the shear layer by
Cherdron, Durst & Whitelaw (1978), although this phenomenon had been explained
by a ‘Coanda’ effect. They used flow visualization and LDV to clarify the mechanism
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that yields the asymmetry and showed that the small disturbances generated at the lip
of the sudden expansion are amplified in the shear layers which are formed between
the main flow and the recirculation flow in the corners. But their explanation of the
phenomenon was inadequate.

The origin of steady asymmetric flows in a symmetric sudden expansion was
clarified by Fearn, Mullin & Cliffe (1990) by using experimental and numerical tech-
niques. They showed that the asymmetry arises at a critical Reynolds number due
to a pitchfork bifurcation and evaluated the critical Reynolds number. The experi-
mentally measured degree of asymmetry at each value of Re showed a satisfactory
agreement with the corresponding value obtained from the numerical results except
in the immediate vicinity of the bifurcation, but the experimental bifurcation dia-
gram is disconnected owing to small imperfections that are inevitably present in the
experimental apparatus. Thus, there was no experimentally observed critical value of
the Reynolds number and no perfectly symmetric state. So, they made an attempt to
model numerically the effect of small imperfections in the flow channel, in order to
try to account for the disconnection in the experimental bifurcation diagram. They
made numerical calculations of the flow in a very slightly asymmetric channel, where
the whole downstream section of the grid was shifted up by 1.25% of the width of
the inlet channel with respect to the axis of symmetry. The numerical results showed
that the size of the disconnection is of the same order as the size of decoupling found
experimentally. They also observed time-dependent flows at higher Reynolds numbers
and attributed the appearance of the unsteadiness to three-dimensional effects.

The linear stability of steady flows in a symmetric channel with a sudden expansion
was determined by an Arnoldi-based iterative method for calculating the most un-
stable eigenmodes by Alleborn et al. (1997). They also applied a continuation method
to study the bifurcation structure of the steady-state solution of the flow, where the
effect of the asymmetry of the channel was also considered. And they obtained com-
plete bifurcation diagrams which include unstable branches as well as stable branches.
The linear growth rate of the least-stable disturbance was also evaluated by Shapira,
Degani & Weihs (1990), where a time-dependent finite element solver was used.

It is known that the weakly nonlinear stability theory may play an important role
in explaining the origin of the imperfect pitchfork bifurcation and evaluating the
magnitude of the disconnection of the bifurcation diagram. The imperfect pitchfork
bifurcation arises through the structural instability of the pitchfork bifurcation due
to an infinitesimal perturbation, i.e. an asymmetry of the channel, which can be
represented by an amplitude equation, but the reduction method to derive the am-
plitude equation from the basic equations (Navier–Stokes and continuity equations)
has not been established. The classical weakly nonlinear theory developed by Stuart
and Watson is applicable only to parallel flows (see Drazin & Reid 1981). An at-
tempt to formulate the weakly nonlinear stability theory for the flow in an expanded
channel was made by Sobey & Drazin (1986). They derived an amplitude equation
by assuming Jeffery–Hamel flow to be a good local approximation for the flow, but
encountered the discrepancy that the amplitude equation shows a subcritical pitchfork
bifurcation for Jeffery–Hamel flow, whereas it is known that the flow in an expanded
channel undergoes a supercritical pitchfork bifurcation.

In the present paper, we propose a formulation to derive the amplitude equation by
applying the weakly nonlinear stability method to the flow in a slightly asymmetric
channel with a sudden expansion and also propose a numerical method to evaluate
the coefficients of the amplitude equation, including the linear growth rate of the
disturbance.
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Figure 1. Configuration and coordinates.

2. Mathematical formulation
2.1. Problem description and basic equations

We consider an almost symmetric channel with a sudden expansion as shown in
figure 1. Flow comes in from the inlet AB of width h, enters the expansion IDEH
through the sudden expansion JC, and goes out from the outlet HE of width 3h. The
expansion ratio E is defined as E = HE/AB and is fixed as E = 3 in the present
study, for which case detailed experimental data are available to compare (Fearn et
al. 1990). The centre-axis of the expanded channel IDEH is shifted up by σh with
respect to the axis of the inlet channel ABCJ, and so the whole channel has an
asymmetry due to the difference between the axes of the inlet and expanded channels.
We call σ the asymmetry ratio hereafter. So, a channel with σ = 0 is symmetric along
the x-axis.

We assume an incompressible and two-dimensional flow field; then the stream
function ψ(x, y, t) and the vorticity ω(x, y, t) formulation can be employed. The
vorticity transport and Poisson equations are written in a non-dimensional form as

∂ω

∂t
= ReJ(ψ,ω) + ∆ω, (2.1)

ω = −∆ψ, (2.2)

where

∆ ≡ ∂2

∂x2
+

∂2

∂y2
, J(f, g) ≡ ∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x
.

All the variables are normalized by using the maximum inlet velocity Umax and the
half-width h/2 of the inlet channel as representative velocity and length scales. It is
noted that the time t is normalized by ν/U2

max. The Reynolds number is defined as
Re = Umaxh/2ν. The set of equations (2.1) and (2.2) is written in an alternative form
as

M
∂ψ

∂t
= Lψ + ReN(ψ, ψ), (2.3)

where M ≡ ∆, L ≡ ∆∆ and N(f, g) ≡ J(f,∆g).
The boundary condition at AB is assumed as a fully developed plane Poiseuille

flow so that

∂ψ

∂x
= 0,

∂ω

∂x
= 0,

ψ =

∫ y

−1

udy =

∫ y

−1

(1− y2)dy = y(1− 1
3
y2) + 2

3
.

 (2.4)
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The outlet condition at HE is

∂2ψ

∂x2
= 0,

∂2ω

∂x2
= 0, (2.5)

because we consider only steady flows in the present paper; otherwise the Sommerfeld
radiation condition may be appropriate.

The boundary conditions on all the walls are the non-slip condition, so the values
of the stream function on the walls are determined as

ψ = ψ1 = 0 on BCDE,

ψ = ψ2 = 4
3

on AJIH,

∂ψ

∂y
= 0 on (BC, DE, AJ, IH),

∂ψ

∂x
= 0 on (CD, IJ), (2.6)

because the volumetric flow rate in each cross-section of the channel is constant.

2.2. Steady-state solution

The flow in a symmetric channel (σ = 0) with a sudden expansion is steady and
symmetric for small Reynolds numbers. The basic flow in the linear and weakly
nonlinear stability analyses is steady symmetric flow in a symmetric channel. On the
other hand, it is steady but asymmetric for the asymmetric channel (σ 6= 0) for small
Reynolds numbers. The steady-state solution (ψ̄, ω̄) satisfies the steady-state vorticity
transport equation and the Poisson equation, which are obtained by dropping the
time-derivative term in (2.3) as

Lψ̄ + ReN(ψ̄, ψ̄) = 0. (2.7)

Equation (2.7) is

Re

(
∂ψ̄

∂y

∂ω̄

∂x
− ∂ψ̄

∂x

∂ω̄

∂y

)
=
∂2ω̄

∂x2
+
∂2ω̄

∂y2
, (2.8)

ω̄ = −
(
∂2ψ̄

∂x2
+
∂2ψ̄

∂y2

)
. (2.9)

The steady-state solution is obtained by solving (2.8), (2.9) numerically by the SOR
iterative method, or by solving (2.1), (2.2) by the time marching method. It is noted
that the stream function ψ̄ for a symmetric steady flow is anti-symmetric along the
x-axis, i.e. the anti-symmetric stream function yields a symmetric flow field.

2.3. Linear stability of the steady-state solutions

The symmetric steady flow in a symmetric channel with a sudden expansion becomes
unstable to small disturbances at a critical Reynolds number Rec, and an asymmetric
steady flow appears due to a pitchfork bifurcation as a result of the instability for
Re > Rec. We consider a disturbance (ψ′, ω′) added to the symmetric steady flow (ψ̄,
ω̄) to investigate its linear stability. Then the vorticity and the stream function are
written as ω = ω̄ + ω̄′ and ψ = ψ̄ + ψ′. By substituting this expression for ψ into
(2.3) and subtracting (2.7), we obtain an equation for ψ′ as

M
∂ψ′

∂t
= Lψ′ + ReN(ψ̄, ψ′) + ReN(ψ′, ψ̄) + ReN(ψ′, ψ′). (2.10)

We neglect the nonlinear term of ψ′ in (2.10) and assume the time dependence of the
disturbance as ψ′ = ψ̂(x, y) exp (λt) and ω′ = ω̂(x, y) exp (λt), where λ is the complex
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linear growth rate of the disturbance. Then the linear stability equation is

λMψ̂ = Lψ̂ + ReN(ψ̄, ψ̂) + ReN(ψ̂, ψ̄). (2.11)

Equation (2.11) is rewritten as

λω̂ =
∂2ω̂

∂x2
+
∂2ω̂

∂y2
+ Re

(
∂ψ̄

∂x

∂ω̂

∂y
− ∂ψ̄

∂y

∂ω̂

∂x
+
∂ψ̂

∂x

∂ω̄

∂y
− ∂ψ̂

∂y

∂ω̄

∂x

)
, (2.12)

ω̂ = −
(
∂2ψ̂

∂x2
+
∂2ψ̂

∂y2

)
. (2.13)

The boundary conditions for (ψ̂, ω̂) are

ψ̂ = 0,
∂ψ̂

∂x
= 0,

∂ω̂

∂x
= 0 on AB,

∂2ψ̂

∂x2
= 0,

∂2ω̂

∂x2
= 0 on HE,

ψ̂ = 0,
∂ψ̂

∂y
= 0 on (BC, DE, AJ, IH), ψ̂ = 0,

∂ψ̂

∂x
= 0 on (CD, IJ).


(2.14)

The value of λ is found by solving (2.12), (2.13) under the boundary condition (2.14)
with the SOR iterative method. The real part of λ, say λr, indicates the linear growth
rate of the disturbance. The steady symmetric flow is unstable if λr > 0, or stable
if λr < 0. The Reynolds number Rec at which λr = 0 gives the critical Reynolds
number Rec. It is shown that the imaginary part of λ, λi, is zero, which shows that the
exchange of stability is valid for the present problem. And the eigenfunctions (ψ̂, ω̂)
at the critical state are shown to be real functions. It is noted that the eigenfunction
ψ̂ for the most unstable mode is symmetric along the x-axis, i.e. the flow field of the
disturbance is anti-symmetric.

2.4. Weakly nonlinear stability analysis for the imperfect pitchfork bifurcation

We consider the weakly nonlinear behaviour of the disturbance added to the sym-
metric flow near the critical state (Re = Rec) and evaluate the effect of the slight
asymmetry of the channel by the weakly nonlinear stability analysis. We derive an
amplitude equation to account for the imperfect pitchfork bifurcation.

We begin with (2.3) and transform the variable y as η = (y − δ)/(1 + δσ) + δ,
where δ = +1 in IJGH, δ = −1 in CDEF, and δ = 0 in ABFG of figure 1. Then,
the asymmetric channel is transformed to an apparently symmetric channel, but the
operators are modified as

∂

∂y
=

1

1 + δσ

∂

∂η
' (1− δσ)

∂

∂η
,

∆ =
∂2

∂x2
+

∂2

∂y2
' ∂2

∂x2
+ (1− δσ)2 ∂

2

∂η2
' ∂2

∂x2
+

∂2

∂η2
− 2δσ

∂2

∂η2
,

 (2.15)

∆2 =

(
∂2

∂x2
+

∂2

∂y2

)(
∂2

∂x2
+

∂2

∂y2

)
' ∂4

∂x4
+ 2

∂2

∂x2

∂2

∂η2
+

∂4

∂η4
− 4δσ

(
∂2

∂x2

∂2

∂η2
+

∂4

∂η4

)
, (2.16)

where we have omitted terms of higher order than O(σ) by considering the asymmetry
parameter σ very small. We must be careful in evaluating η-derivatives by finite
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difference approximations along JG and CF (figure 1). Equation (2.3) is written in
the new variable η as

∂

∂t
(M0 − δσM1)ψ = ReN0(ψ, ψ)− δσReN1(ψ, ψ) + L0ψ − δσL1ψ, (2.17)

where

M0 = ∆η, M1 = 2
∂2

∂η2
, L0 = ∆η∆η, L1 = 4∆η

∂2

∂η2
,

N0(f, g) = J(f, ∆ηg), N1(f, g) = J(f, D2g),

∆η =
∂2

∂x2
+

∂2

∂η2
, L2 =

∂2

∂x2
+ 3

∂2

∂η2
.


(2.18)

We express the stream function ψ as the sum of the steady-state solution ψ̄(x, y)
and the disturbance ψ′(x, y, t) as ψ = ψ̄ + ψ′. Substituting this expression for ψ into
(2.17) and subtracting (2.7), we obtain an equation for ψ′ as

∂

∂t
(M0 − δσM1)ψ

′ = L0ψ
′ − δσL1ψ

′ + ReN0(ψ̄, ψ
′) + ReN0(ψ

′, ψ̄) + ReN0(ψ
′, ψ′)

−δσReN1(ψ̄, ψ̄)− δσReN1(ψ̄, ψ
′)− δσReN1(ψ

′, ψ̄)− δσReN1(ψ
′, ψ′). (2.19)

For the local bifurcation analysis near the critical state (Re & Rec), we adopt ε, defined
by ε2 ≡ Re−Rec, as a small parameter and put σ = ε3σ1 by assuming the asymmetry
σ of the channel is very small as σ ∼ O(ε3), which is the smallest magnitude to be
included in the lowest-order analysis (O(ε3)) of the pitchfork bifurcation. We expand
physical quantities such as ψ̄, ψ′ and t in ε as

ψ′ = εψ̃1 + ε2ψ̃2 + ε3ψ̃3 + · · · ,
ψ̄ = ψ̄0 + ε2ψ̄1 + · · · ,
∂

∂t
=

∂

∂t0
+ ε2 ∂

∂t1
+ · · · .

 (2.20)

The expansion of ψ̄ comes from the fact that ψ̄ is a function of Re, so ψ̄ =
ψ̄0 + (Re−Rec)(∂ψ̄/∂Re)Re=Rec

+ · · · . The expansions of ψ′ and t are similar to those
in the conventional weakly nonlinear stability analysis for parallel flows.

The equations for ψ̄0 and ψ̄1 are obtained by substituting the expansion of ψ̄ into
(2.7) and equating terms of the same order, O(1) and O(ε2), respectively. The equation
for ψ̄0 has the same form as (2.7) with Re being replaced by Rec and is expressed as

Lψ̄0 + RecN(ψ̄0, ψ̄0) = 0. (2.21)

The function ψ̄1 is the derivative of ψ̄ with respect to Re at Rec, expressed as
(∂ψ̄/∂Re)|Re=Rec

and satisfies the equation

Lψ̄1 +N(ψ̄0, ψ̄0) + RecN(ψ̄1, ψ̄0) + RecN(ψ̄0, ψ̄1) = 0. (2.22)

The symmetric steady-state solution ψ̄0 must satisfy the boundary conditions (2.4),
(2.5) and (2.6), whereas the boundary conditions for ψ̄1 are the same as those for ψ̂, i.e.
(2.14). The functions ψ̄0 and ψ̄1 are obtained by solving (2.21) and (2.22) numerically
under the boundary conditions (2.4), (2.5), (2.6) and (2.14) with the SOR iterative
method, respectively.

The equations for ψ̃1, ψ̃2 and ψ̃3 are obtained by substituting the expansion of
ψ̃ into (2.19) and equating terms of the same order, O(ε), and O(ε2) and O(ε3),
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respectively. The equation for ψ̃1 is expressed as

L0ψ̃1 + RecN0(ψ̄0, ψ̃1) + RecN0(ψ̃1, ψ̄0) = 0, (2.23)

which is identical to (2.11) if it is considered that the complex linear growth rate λ is
identically zero at the critical state.

The boundary conditions for ψ̃1 should be the same as those for ψ′, but we choose
modified boundary conditions rather than (2.14) for the sake of simplicity to define
an adjoint function of ψ̃1, which are expressed as

ψ̃1 = 0,
∂ψ̃1

∂x
= 0 on (AB, HE),

ψ̃1 = 0,
∂ψ̃1

∂y
= 0 on (BC, DE, AJ, IH), ψ̃1 = 0,

∂ψ̃1

∂x
= 0 on (CD, IJ).

 (2.24)

It is confirmed by numerical calculations of (2.23) under the two different boundary
conditions (2.14) and (2.24) that modification of the boundary condition does not
affect the eigenfunction ψ̃1 significantly. This is because the disturbance ψ̃1 has
no significant magnitude as far downstream as the outlet HE. In other words, the
bifurcated flow becomes fully developed plane Poiseiulle flow near the outlet HE. This
is in contrast with the case of the Hopf bifurcation, where the disturbance travels far
downstream as Tollmien–Schlichting waves.

Since equation (2.23) is linear and homogeneous, we need to impose an additional
condition, i.e. a normalization condition, to determine the solution uniquely. In the
normalization of ψ̃1, we adopt the velocity v1 in the y-direction at a representative
point P1 = (x1, η1) = (12.75, 0) as the representative quantity which manifests the
magnitude of the asymmetry of the flow (see figure 1). Then the solution ψ̃1 is obtained
by solving (2.23) under the boundary condition (2.24) with the SOR iterative method
in the form

ψ̃1 = A(t)g1(x, η) (2.25)

with the normalization condition −∂g1/∂x(x1, η1) = 1. With this normalization, we
can consider the amplitude A(t) as the magnitude of the velocity v1 in the y-direction
at P1. It is shown that the eigenfunction g1 is symmetric along the x-axis.

The adjoint equation of (2.23) is

L0g̃ − RecN0(ψ̄0, g̃)− RecN2(ψ̄0, g̃) + RecN2(g̃, ψ̄0) = 0, (2.26)

where

N2(f, g) = 2
∂2f

∂x∂y

(
∂2g

∂x2
− ∂2g

∂y2

)
.

The function g̃ is an adjoint function of g1 which satisfies the same boundary
conditions (2.24) as those for g1. Needless to say the adjoint function is also symmetric
along the x-axis.

The equation for ψ̃2 is obtained by collecting O(ε2) terms as

L0ψ̃2 + RecN0(ψ̄0, ψ̃2) + RecN0(ψ̃2, ψ̄0) + RecN0(ψ̃1, ψ̃1) = 0. (2.27)

The boundary conditions for ψ̃2 are the same as those for g1, but the function ψ̃2 is
anti-symmetric along the x-axis. The equation (2.27) is linear but inhomogeneous, so
the solution ψ̃2 is obtained without any normalization condition and is written as

ψ̃2 = A(t)2g2(x, η) + Cg1(x, η). (2.28)

The coefficient C in (2.28) is determined as C = 0 from symmetry considerations.
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By collecting the terms of O(ε3), we obtain the equation for ψ̃3 as

L0ψ̃3 + RecN0(ψ̄0, ψ̃3) + RecN0(ψ̃3, ψ̄0)

=
∂

∂t1
M0ψ̃1 − RecN0(ψ̄1, ψ̃1)−N0(ψ̄0, ψ̃1)− RecN0(ψ̃1, ψ̄1)−N0(ψ̃1, ψ̄0)

−RecN0(ψ̃1, ψ̃2)− RecN0(ψ̃2, ψ̃1) + δσ1RecN1(ψ̄0, ψ̄0) + δσ1L1ψ̄0. (2.29)

Equation (2.29) has a solution if and only if the solvability condition∫
D

g̃

{
∂

∂t1
M0ψ̃1 − RecN0(ψ̄1, ψ̃1)−N0(ψ̄0, ψ̃1)

−RecN0(ψ̃1, ψ̄1)−N0(ψ̃1, ψ̄0)− RecN0(ψ̃1, ψ̃2)− RecN0(ψ̃2, ψ̃1)

+δσ1RecN1(ψ̄0, ψ̄0) + δσ1L1ψ̄0

}
dxdy = 0 (2.30)

is satisfied, where D is the domain ABCDEHIJ in figure 1. On substitution of (2.25)
and (2.28), equation (2.30) leads to an amplitude equation

dA

dt1
= λ1A+ λ2A

3 + λ0σ1, (2.31)

where

λ1 =
α1

β
, λ2 =

α2

β
, λ0 =

α0

β
, (2.32)

β =

∫
D

g̃M0g1dxdy, (2.33)

α1 =

∫
D

g̃{RecN0(ψ̄1, g1) +N0(ψ̄0, g1) + RecN0(g1, ψ̄1) +N0(g1, ψ̄0)}dxdy, (2.34)

α2 =

∫
D

g̃{RecN0(g1, g2) + RecN0(g2, g1)}dxdy, (2.35)

α0 = −
∫
D

g̃{δRecN1(ψ̄0, ψ̄0) + δL1ψ̄0}dxdy. (2.36)

The integrations in (2.33)–(2.36) are evaluated numerically by Simpson’s formula.
Equation (2.31) can be rewritten in original variables as

dv1

dt
= λ1(Re− Rec)v1 + λ2v1

3 + σλ0, (2.37)

where relations

ε2 = (Re− Rec), ε2 ∂

∂t1
=

∂

∂t
, εA = v1

are utilized.

2.5. Numerical methods

We have performed numerical simulations for the flow in a channel with a sudden ex-
pansion by the time marching method. The whole computational domain is discretized
by an equally spaced mesh with ∆x = ∆y = 0.1. The vorticity transport equation
(2.1) is approximated by the explicit Euler method with first-order accuracy in time
together with second-order accuracy of central finite differences in space. The time
increment ∆t is chosen as ∆t = 0.001 or ∆t = 0.0005 depending upon the Reynolds
number. The Poisson equation (2.2) is approximated by second-order central finite
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differences and solved by the SOR method, where the relaxation factor r = 1.5 is
used. The convergence of the SOR method is determined when the maximum relative
error for the stream function reaches 10−5 and the steady flow state is determined
when the stream function becomes time independent and the maximum relative error
reaches 10−10.

The steady-state solutions are also obtained numerically from the steady-state
equations. Both the steady-state vorticity transport equation obtained by putting
d/dt = 0 in (2.4) and the Poisson equation (2.5) are solved by the SOR iterative
method. Finite difference approximations in an equally spaced mesh with ∆x = ∆y =
0.1 are used. Spatial derivatives are approximated by fourth-order finite differences.
The relaxation factor r for the SOR method is in the range 0.7 < r < 1.0 depending
upon the Reynolds number. The convergence of the SOR method is determined
when the maximum relative error for the stream function reaches 10−10. In order to
calculate unstable steady symmetric solutions above a critical Reynolds number, the
SOR method is utilized under the symmetry condition along the centreline of the
channel. The eigenvalue problem for the linear stability equations (2.12) and (2.13) is
also solved by the SOR method in a similar way to the steady-state solutions except
that λ is also assumed as a dependent variable as well as ψ̂ and one more equation
−(∂ψ̂/∂x)P1

= 1 (figure 1), i.e. the normalization condition, is solved besides (2.12)
and (2.13).

3. Numerical results
3.1. Transition of the flow

It is confirmed by our numerical simulations that the flow in a symmetric channel
with a sudden expansion (σ = 0) approaches a unique steady state after enough time
has elapsed at low Reynolds numbers. The flow pattern is symmetric along the centre
of the channel as shown in figure 2(a), where streamlines of the flow are depicted
for Re = 40 as a typical example. It is seen in this figure that the flow field has
two recirculation vortices with equal lengths behind the backward facing steps. As
the Reynolds number is increased, the symmetric flow becomes unstable at a critical
Reynolds number Rec and an asymmetric flow appears due to a symmetry-breaking
pitchfork bifurcation for Re > Rec. Figure 2(b) shows the flow pattern of such an
asymmetric flow at Re = 45. We can see in this figure that the flow bends towards
one sidewall behind the sudden expansion. The direction of the bend is determined
randomly with equal probabilities for the two directions theoretically, although it is
determined by the algorithm in the computation. The sizes of the two recirculation
vortices are quite different from each other.

We have calculated the equilibrium solution with the SOR method to confirm the
bifurcation phenomena obtained by Fearn et al. (1990). We choose the velocity v1

in the y-direction at P1 = (x1, η1) = (12.75, 0) as the representative quantity which
manifests the magnitude of the asymmetry as in the paper of Fearn et al. (1990). The
bifurcation diagram is shown in figure 3, where the dashed lines show the values of v1

for the stable asymmetric equilibrium solutions obtained by the SOR method and the
dotted line indicates the unstable symmetric solution. We can see that the symmetric
flow becomes unstable at Rec = 40.23 (P in figure 3), from which two asymmetric flows
appear due to a symmetry-breaking pitchfork bifurcation. The bifurcation diagram
obtained by Fearn et al. (1990) is depicted by a dash-dotted line in figure 3, which
coincides with our numerical result (dashed line). Fearn et al. (1990) evaluated the
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Figure 2. Flow patterns. σ = 0 (symmetric channel). (a) Re = 40, steady symmetric flow.
(b) Re = 45, steady asymmetric flow.
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Figure 3. Bifurcation diagram. σ = 0 (symmetric channel).

critical Reynolds number as Rec = 40.45 ± 0.17%, which should be compared with
our estimation Rec = 40.23. Note that the critical values Rec have been obtained as
Rec = 109, 40, 21.4, 12.8 for E = 2, 3, 5, 10, respectively by Alleborn et al. (1997).
And it is expected that Rec tends to infinity as E → 1.

3.2. Linear growth rate

We evaluate the linear growth rate of the symmetric flow in the symmetric channel
(σ = 0), which is indicated by AB in figure 3, by solving (2.12), (2.13) under the
boundary condition (2.14) by the SOR method with the finite difference approximation
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in a similar way to obtain the steady-state solutions. In the numerical calculation
of the linear growth rate, we have imposed the normalization condition that the
velocity v1 in the y-direction at P1 = (x1, η1) = (12.75, 0) is unity. The normalization
condition is not essential in the evaluation of the linear growth rate, but is important
for the convergence of the SOR iterative method. The complex growth rate is shown
to be real (λi = 0), that is, the exchange of stability is proved to be valid in this
case. The linear growth rates obtained are shown by filled circles in figure 4, where
numerical data obtained by Alleborn (1999, personal communication) and Shapira
et al. (1990) are also plotted (their values of λ′, Re′ are rescaled as λ = Reλ′/2,
Re = Re′/2 to match the two different normalizations for time and length scales). The
critical Reynolds number at which the linear growth rate becomes zero is evaluated
as Rec = 40.24, which is in good agreement with our numerical result (Rec = 40.23)
of the nonlinear equilibrium solution by the SOR method. So it is concluded that the
branch AP of the symmetric flow is stable, whereas the branch PB is unstable. Note
also that the asymmetric solutions indicated by PC and PD are stable although we
have not evaluated the linear growth rate for these solutions.

The flow pattern of the most unstable mode of disturbance at the critical Reynolds
number Rec = 40.24 is shown in figure 5, where the streamlines of the disturbance
are depicted. It is seen that the disturbance has one vortex just behind the sudden
expansion and that the vortex has a length of about 18h in the streamwise direction.
The rather short length of the vortex is characteristic of the disturbance for symmetry-
breaking pitchfork bifurcations. So, the bending part of the asymmetric flow resultant
from the pitchfork bifurcation is limited to a finite region behind the sudden expansion
of the channel.

Needless to say the difference of the asymmetric flows indicated by PC or PD in
figure 3 from the symmetric flow PB has a similar flow pattern to the disturbance
shown in figure 5, near the critical point P.

3.3. Weakly nonlinear stability analysis

It is known that the symmetric flow becomes unstable at the critical Reynolds number
Rec due to the symmetry-breaking pitchfork bifurcation for the case of symmetric
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Figure 5. Flow pattern of the most unstable mode of disturbance at the critical
Reynolds number (Rec = 40.24).

channel (σ = 0). We have confirmed from our numerical results for the equilibrium
solution that a relation v2

1 ∝ (Re−Rec) holds near the critical state, which shows that
a pitchfork bifurcation occurs at the critical state. On the other hand, the amplitude
equation (2.31) directly expresses the pitchfork bifurcation at the critical state.

We evaluate the coefficients λ0, λ1, λ2 of the amplitude equation numerically and
compare the amplitude evaluated from (2.31) with the numerical results of the equi-
librium solution. For the evaluation of the coefficients, we need the functions ψ̄0,
ψ̄1 for the steady-state solutions, and g1, g2, g̃ for the disturbance. The steady-state
solutions ψ̄0 and ψ̄1 are obtained by solving (2.21) and (2.22) under the appropriate
boundary conditions by the SOR iterative method in a similar way to the numerical
calculations of the steady-state solution explained in § 2.5. The linear eigenfunction
g1 and its adjoint function g̃ are calculated by solving (2.23) and (2.26) under the
boundary condition (2.24) by the SOR iterative method together with the normal-
ization condition v1 = 1 at P1 = (x1, η1). The function g2 is calculated from (2.27)
under the boundary condition (2.24) by assuming the anti-symmetric solution. The
integrations in (2.33)–(2.36) are evaluated numerically with Simpson’s formula. We
adopt the value of Rec = 40.24 as the critical Reynolds number, which is obtained by
the linear stability theory. Thus the coefficients of the amplitude equation (2.31) are
evaluated as λ1 = 3.6405× 10−2, λ2 = −4.9579× 101, λ0 = 1.0404× 10−1.

For the case of a symmetric channel (σ = 0), the equilibrium amplitude v1 is
evaluated from (2.37) as

v1 =

√
−λ1(Re− Rec)

λ2

, (3.1)

and the values of v1 are plotted in figure 3. It is seen in figure 3 that the coinciding
of the results of the weakly nonlinear stability analysis (solid line, EPF) and the
numerical calculation of the equilibrium solution (dashed line, CPD) is limited to
the vicinity of the critical point such that Rec = 40.24 6 Re . 42. However, it is
thus proved by the weakly nonlinear stability analysis that a supercritical pitchfork
bifurcation occurs at the critical point. So, the weakly nonlinear stability theory is
a very powerful tool to help understand the phenomena underlying physics of the
instability although its applicable parameter range is rather limited.

As an example of slightly asymmetric channel (σ 6= 0), we show the bifurcation
diagram for σ = 0.001 in figure 6, where the velocity v1 evaluated from (2.37) is
depicted by solid and dotted lines. The solid line indicates the stable solution and
the dotted line the unstable solution. The symbol T in figure 6 shows the turning
point. Numerical results are also plotted by the dashed lines. Note that we could not
calculate the unstable portion of the bifurcation diagram numerically. We can see
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Figure 6. Bifurcation diagram. σ = 0.001 (asymmetric channel).

that the pitchfork bifurcation becomes imperfect even for a very slightly asymmetric
channel. The amplitude v1 evaluated by the weakly nonlinear stability analysis is in
good accordance with the numerical results in quite a wide range of parameter Re.

As stated in the introduction, Fearn et al. investigated the transition of the flow in
what they presumed to be a symmetric channel with a sudden expansion experimen-
tally, and found that their experimental results did not agree with their numerical
results. They compared the experimental results with the numerical ones for the flow
in a slightly asymmetric channel with σ = 0.0125 by making the conjecture that an
imperfection in their experimental apparatus may make the bifurcation imperfect,
and obtained close agreement between experimental and numerical results. We also
evaluate the equilibrium amplitude v1 for σ = 0.0125 by the weakly nonlinear analysis
from (2.37) and plot the values in figure 7. The solid lines indicate v1 evaluated from
the weakly nonlinear stability theory, the dashed lines the numerical solutions for
σ = 0.0125, whereas the ‘+’ symbols show the experimental results for the presumed
symmetric channel by Fearn et al. (1990). It is seen in figure 7 that the weakly
nonlinear stability analysis (solid line) and the numerical solution (dashed line) are in
close agreement with the experimental results by Fearn et al. (1990) for the smooth
transition branch in the upper half of the figure (v1 > 0), but the coinciding of the
solid and dashed lines with the symbols + (experiments) is not very good for the
saddle node branch in the lower half of the figure (v1 < 0). It is our speculation that
the imperfection observed by Fearn et al. (1990) may partially come from the very
slight asymmetry of the channel, but there may be other factors such as an asymmetry
of the inlet flow and small thermal effects in the fluid. However, the inclusion of the
asymmetry σ = 0.0125 of the channel gives better agreement with the experimental
results than for the case of σ = 0 although the outlet as well as the inlet conditions
in the numerical and laboratory experiments differ, especially for large values of the
Reynolds number.
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4. Discussion
We have applied weakly nonlinear stability theory to the flow in a slightly asym-

metric channel with a sudden expansion and evaluated the equilibrium amplitude
from the amplitude equation. Experimental results are known to include the effect of
a very small amount of imperfectness in the experimental apparatus, which makes the
pitchfork bifurcation imperfect. We have estimated the magnitude of the imperfection
σ in the experiments (Fearn et al. 1990) by fitting the value of v1 evaluated from the
weakly nonlinear stability theory with the experimental results. We obtained a value
of σ = 0.0125 similar to Fearn et al. (1990) for the imperfection included in their
experimental apparatus by the curve fitting.

We have compared the results from the weakly nonlinear stability analysis with the
experimental and numerical results and shown that the parameter range where the
weakly nonlinear stability theory gives a very good approximation is rather limited
in the vicinity of the critical point. The unfolding of the pitchfork bifurcation due
to an imperfection is familiar and the amplitude equation (2.37) is well known in
dynamical system theory. Moreover the imperfect pitchfork bifurcation diagram has
already been obtained experimentally. So, one might ask what is new in the present
paper. Our answer is that the weakly nonlinear stability theory shows the essential and
skeleton dynamics of the phenomena, from which we can understand the underlying
physics of instabilities. It is this bridging of the gap between simple dynamical system
theory and complex real fluid dynamics that is shown in the present analysis.

We have considered the perturbation (imperfection) to the system by considering
there to be a difference in the axes of the inlet and expanded channels as well as
in the disturbance to the basic symmetric flow, and evaluated the magnitude of the
imperfection in the experimental apparatus. There may of course be other factors
which render the pitchfork bifurcation imperfect. The effects of such factors can be
considered in a similar way as the analysis in the present paper.
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